论文标题

关于在二维常规局部环上有限的Noetherian代数

On finite generation of Noetherian algebras over two-dimensional regular local rings

论文作者

Dutta, Amartya Kumar, Gupta, Neena, Onoda, Nobuharu

论文摘要

让$ r $成为一个完全常规的本地环,带有代数封闭的残留场,让$ a $为多项式环$ r [x] $的noetherian $ r $ -subalgebra。在\ cite {do2}中已显示,如果$ \ dim r = 1 $,则$ a $必然在$ r $上有限生成。在本文中,当$ \ dim r = 2 $时,我们给出了$ a $的必要条件,以在$ r $上有限生成,并为$ r [x] $ of $ r [x] $ over $ r = {\ mathbb c} [\ mathbb c} [[u,v] $ of $ r [x] $的Noetherian普通产生的示例。

Let $R$ be a complete regular local ring with an algebraically closed residue field and let $A$ be a Noetherian $R$-subalgebra of the polynomial ring $R[X]$. It has been shown in \cite{DO2} that if $\dim R=1$, then $A$ is necessarily finitely generated over $R$. In this paper, we give necessary and sufficient conditions for $A$ to be finitely generated over $R$ when $\dim R=2$ and present an example of a Noetherian normal non-finitely generated $R$-subalgebra of $R[X]$ over $R= {\mathbb C}[[u, v]]$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源