论文标题

部分可观测时空混沌系统的无模型预测

Noether Symmetry Approach to the Non-Minimally Coupled $Y(R)F^2$ Gravity

论文作者

Sert, Özcan, Çeliktaş, Fatma

论文摘要

我们使用Noether对称方法来找到非最小耦合电磁场的球形对称静态溶液至重力。我们在球形对称性假设下构造了点状的拉格朗日。然后,我们确定Noether对称性和相应的保守电荷。我们从这个点状的lagrangian得出Euler-lagrange方程,并表明这些方程与从模型的字段方程得出的微分方程相同。同样,我们为这些方程式提供了两个新的渐近溶液,并研究了这些黑洞的某些热力学特性。

We use Noether symmetry approach to find spherically symmetric static solutions of the non-minimally coupled electromagnetic fields to gravity. We construct the point-like Lagrangian under the spherical symmetry assumption. Then we determine Noether symmetry and the corresponding conserved charge. We derive Euler-Lagrange equations from this point-like Lagrangian and show that these equations are same with the differential equations derived from the field equations of the model. Also we give two new exact asymptotically flat solutions to these equations and investigate some thermodynamic properties of these black holes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源