论文标题
高级圆环动作在接触歧管上
High rank torus actions on contact manifolds
论文作者
论文摘要
在以下情况下,我们证明了勒布朗 - 萨拉蒙的猜想:如果$ x $是dimension $ 2n+1 $的联系人fano歧管,其自动形态的群体是级别的$ \ geq \ geq \ max(2,(n-3)/2),那么$ x $是简单组的相邻品种。等级假设不仅通过三个系列的经典线性群来实现,而且还通过几乎所有杰出的线性群来实现。
We prove LeBrun--Salamon conjecture in the following situation: if $X$ is a contact Fano manifold of dimension $2n+1$ whose group of automorphisms is reductive of rank $\geq \max(2,(n-3)/2)$ then $X$ is the adjoint variety of a simple group. The rank assumption is fulfilled not only by the three series of classical linear groups but also by almost all the exceptional ones.