论文标题

多局部多稳定Riemann-Liouville流程的小波系列表示

Wavelet series representation for multifractional multistable Riemann-Liouville process

论文作者

Ayache, Antoine, Hamonier, Julien

论文摘要

本文的主要目的是为随机字段$ x $构建小波型随机串联表示,该表示由多稳定随机积分定义,该积分生成了多效性多效性Riemann-Liouville(MMRL)流程$ y $。除其他外,这种表示提供了$ y $的路径的有效方法。为了获得它,我们在HAAR基础上扩展了与$ x $相关的集成,我们使用了多稳态随机积分的一些基本属性。然后,由于亚伯的求和规则和DOOB对离散的非平滑赛的最大不等式,我们表明,$ x $的小波型随机串联表示在很强的意义上是融合的:在连续功能的某些空间中,几乎可以肯定。另外,我们确定了其在这些空间中几乎确定的收敛速率的估计。

The main goal of this paper is to construct a wavelet-type random series representation for a random field $X$, defined by a multistable stochastic integral, which generates a multifractional multistable Riemann-Liouville (mmRL) process $Y$. Such a representation provides, among other things, an efficient method of simulation of paths of $Y$. In order to obtain it, we expand in the Haar basis the integrand associated with $X$ and we use some fundamental properties of multistable stochastic integrals. Then, thanks to the Abel's summation rule and the Doob's maximal inequality for discrete submartingales, we show that this wavelet-type random series representation of $X$ is convergent in a strong sense: almost surely in some spaces of continuous functions. Also, we determine an estimate of its almost sure rate of convergence in these spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源