论文标题
简洁范围的下限最小查询
Lower Bound for Succinct Range Minimum Query
论文作者
论文摘要
Given an integer array $A[1..n]$, the Range Minimum Query problem (RMQ) asks to preprocess $A$ into a data structure, supporting RMQ queries: given $a,b\in [1,n]$, return the index $i\in[a,b]$ that minimizes $A[i]$, i.e., $ \ mathrm {argmin} _ {i \ in [a,b]} a [i] $。这个问题具有经典的解决方案,使用$ o(n)$空间和$ o(1)$查询时间,由Gabow,Bentley,Tarjan(Stoc,1984)和Harel,Tarjan(Sicomp,1984)。 Fischer,Heun(Sicomp,2011)和Navarro的最著名数据结构,Sadakane(Talg,2014年)使用$ 2N+N/(\ frac {\ frac {\ log n} {t} {t})^t+\ t+\ tilde {o} {o}(o}(n^{3/4}) n)$。特别是,只要查询时间是常数,它使用$ 2N+N/\ MATHRM {poly} \ log n $ log n $位。 在本文中,我们证明了此问题的第一个下限,表明$ 2N+N/\ MATHRM {POLY} \ LOG N $空间对于恒定查询时间是必需的。通常,我们表明,如果数据结构具有查询时间$ o(t)$,则必须在单词大小的模型中使用至少$ 2N+n/(\ log n)^{\ tilde {o}(t^2)} $ space,带有单词size $ w =θ(\ log n)$。
Given an integer array $A[1..n]$, the Range Minimum Query problem (RMQ) asks to preprocess $A$ into a data structure, supporting RMQ queries: given $a,b\in [1,n]$, return the index $i\in[a,b]$ that minimizes $A[i]$, i.e., $\mathrm{argmin}_{i\in[a,b]} A[i]$. This problem has a classic solution using $O(n)$ space and $O(1)$ query time by Gabow, Bentley, Tarjan (STOC, 1984) and Harel, Tarjan (SICOMP, 1984). The best known data structure by Fischer, Heun (SICOMP, 2011) and Navarro, Sadakane (TALG, 2014) uses $2n+n/(\frac{\log n}{t})^t+\tilde{O}(n^{3/4})$ bits and answers queries in $O(t)$ time, assuming the word-size is $w=Θ(\log n)$. In particular, it uses $2n+n/\mathrm{poly}\log n$ bits of space as long as the query time is a constant. In this paper, we prove the first lower bound for this problem, showing that $2n+n/\mathrm{poly}\log n$ space is necessary for constant query time. In general, we show that if the data structure has query time $O(t)$, then it must use at least $2n+n/(\log n)^{\tilde{O}(t^2)}$ space, in the cell-probe model with word-size $w=Θ(\log n)$.