论文标题

从Holant到量子纠缠,然后返回

From Holant to Quantum Entanglement and Back

论文作者

Cai, Jin-Yi, Fu, Zhiguo, Shao, Shuai

论文摘要

Holant问题与量子理论作为张量网络密切相关。我们首先使用Holant理论的技术来得出量子纠缠理论的新结果和改进的结果。我们发现了两个特定的纠缠状态$ | {ψ_6} \ rangle $,分别为6 Qubits和$ | {ψ_8} \ rangle $ 8 Qubits的$,它们具有铃铛属性的非凡和独特的封闭属性。然后,我们使用约束函数的纠缠特性来得出所有包含奇特签名的真实评估的Holant问题的新复杂性二分法。签名不必是对称的,也没有假定辅助签名。

Holant problems are intimately connected with quantum theory as tensor networks. We first use techniques from Holant theory to derive new and improved results for quantum entanglement theory. We discover two particular entangled states $|{Ψ_6}\rangle$ of 6 qubits and $|{Ψ_8}\rangle$ of 8 qubits respectively, that have extraordinary and unique closure properties in terms of the Bell property. Then we use entanglement properties of constraint functions to derive a new complexity dichotomy for all real-valued Holant problems containing an odd-arity signature. The signatures need not be symmetric, and no auxiliary signatures are assumed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源