论文标题

谐波和谐波术语数量的界限

Bounds for the Number of Terms of Harmonic Sums

论文作者

Dagal, Keneth Adrian

论文摘要

本文提供了用$ f $表示的谐波总和表示的条款数量的界限,其条件是从任何任意单位分数$ \ frac {1} {1} {m} $,$ m> 1 $开始,直到另一个单位分数$ \ frac {1} {1} {m+f-1} $ sum比最高的$ sugh yeeger $ q q。此外,我们考虑埃及分数的条款数量,其条款是$ r $,$ r \ geq 1 $的连续倍数,在上述条件下。我们以案例的公式结束论文:$ q = 1 $和$ r = 1 $。

This paper provides bounds for the number of terms, denoted by $f$, of a harmonic sum with the condition that it starts from any arbitrary unit fraction $\frac{1}{m}$, $m > 1$, until another unit fraction $\frac{1}{m+f-1}$ such that the sum is the highest sum less than a particular positive integer $q$. Also, we consider the number of terms of Egyptian fractions whose terms are consecutive multiples of $r$, $r \geq 1$, under the same above condition. We end the paper with a formula for the case: $q=1$ and $r=1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源