论文标题

$ h^{s}(\ mathbb {t},\ mathbb {r})$ and and的定性特性

Sharp well-posedness results of the Benjamin-Ono equation in $H^{s}(\mathbb{T},\mathbb{R})$ and qualitative properties of its solution

论文作者

Gérard, P., Kappeler, T., Topalov, P.

论文摘要

我们证明,在sobolev space $ h^{s}(\ mathbb {t},\ mathbb {r})$中,benjamin-圆环上的方程式在全球范围内均得到良好的序列。因此,Benjamin的关键Sobolev指数$ S_C = -1/2 $ - 方程是圆环上适当的阈值。获得的解决方案几乎是周期性的。此外,我们证明,圆环上的本杰明·诺克方程的波动解决方案在$ h^{s}(\ mathbb {t},\ mathbb {r})$中呈轨道稳定。新颖的保护定律和$ h^{s}上的非线性傅立叶变换(\ mathbb {t},\ mathbb {r})$,$ s> -1/2 $是这些结果证明的关键成分。

We prove that the Benjamin--Ono equation on the torus is globally in time well-posed in the Sobolev space $H^{s}(\mathbb{T},\mathbb{R})$ for any $s > - 1/2$ and ill-posed for $s \le - 1/2$. Hence the critical Sobolev exponent $s_c=-1/2$ of the Benjamin--Ono equation is the threshold for well-posedness on the torus. The obtained solutions are almost periodic in time. Furthermore, we prove that the traveling wave solutions of the Benjamin-Ono equation on the torus are orbitally stable in $H^{s}(\mathbb{T},\mathbb{R})$ for any $ s > - 1/2$. Novel conservation laws and a nonlinear Fourier transform on $H^{s}(\mathbb{T},\mathbb{R})$ with $s > - 1/2$ are key ingredients into the proofs of these results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源