论文标题
关于大量和弦的增长率
On the growth rate of geodesic chords
论文作者
论文摘要
我们表明,无限基本组的每个前锋完整的鳍形歧管,而不是同等的$ s^1 $的同性恋歧管,这在任何给定的点$ p $ and $ q $上都无限地几何不同的几何测量学。在$β_1(M; \ m; \ Mathbb {z})\ geq 1 $和$ m $的特殊情况下,关闭了两个点之间的几何不同测量学的数量,至少会在对数上生长。
We show that every forward complete Finsler manifold of infinite fundamental group and not homotopy-equivalent to $S^1$ has infinitely many geometrically distinct geodesics joining any given pair of points $p$ and $q$. In the special case in which $β_1(M;\mathbb{Z})\geq 1$ and $M$ is closed, the number of geometrically distinct geodesics between two points grows at least logarithmically.