论文标题
依次指导MCMC的合成可能性和相关合成似然的建议
Sequentially guided MCMC proposals for synthetic likelihoods and correlated synthetic likelihoods
论文作者
论文摘要
合成的可能性(SL)是当分析或计算障碍的可能性函数时,是参数推断的一种策略。在SL中,与数据的汇总统计数据相比,数据的似然函数被多元高斯密度替换。 SL需要在采样算法(例如Markov Chain Monte Carlo(MCMC))考虑的每个参数值中模拟许多重复数据集,从而使方法计算密集型。我们提出了减轻计算负担的两种策略。首先,我们引入了一种算法,该算法产生了一个依次调整并符合数据的建议分布,因此它迅速\ textIt {guides}提出的参数朝向高后密度区域。在我们的实验中,我们算法的少量迭代足以快速定位高密度区域,我们用来初始化一个或几个链,以利用现成的自适应MCMC方法。我们的“指导”方法也可以与MCMC采样器一起用于近似贝叶斯计算(ABC)。其次,我们利用从相关的伪划分的MCMC文献中借用的策略来改善SL框架中的链条混合。此外,当后验是多模式时,并且在标准采样器失败的参数空间的低后概率区域初始化链时,我们的方法可以推断为具有挑战性的案例研究。为了说明我们框架所带来的优势,我们考虑了五个基准示例,包括估算宇宙学模型的参数和具有高度非高斯摘要统计的随机模型。
Synthetic likelihood (SL) is a strategy for parameter inference when the likelihood function is analytically or computationally intractable. In SL, the likelihood function of the data is replaced by a multivariate Gaussian density over summary statistics of the data. SL requires simulation of many replicate datasets at every parameter value considered by a sampling algorithm, such as Markov chain Monte Carlo (MCMC), making the method computationally-intensive. We propose two strategies to alleviate the computational burden. First, we introduce an algorithm producing a proposal distribution that is sequentially tuned and made conditional to data, thus it rapidly \textit{guides} the proposed parameters towards high posterior density regions. In our experiments, a small number of iterations of our algorithm is enough to rapidly locate high density regions, which we use to initialize one or several chains that make use of off-the-shelf adaptive MCMC methods. Our "guided" approach can also be potentially used with MCMC samplers for approximate Bayesian computation (ABC). Second, we exploit strategies borrowed from the correlated pseudo-marginal MCMC literature, to improve the chains mixing in a SL framework. Moreover, our methods enable inference for challenging case studies, when the posterior is multimodal and when the chain is initialised in low posterior probability regions of the parameter space, where standard samplers failed. To illustrate the advantages stemming from our framework we consider five benchmark examples, including estimation of parameters for a cosmological model and a stochastic model with highly non-Gaussian summary statistics.