论文标题
缩放的小增益方法可以强大控制LPV系统的延迟不确定的延迟
Scaled Small-Gain Approach to Robust Control of LPV Systems with Uncertain Varying Delay
论文作者
论文摘要
随着时间变化的延迟不确定性的线性参数变化(LPV)系统会受到性能降解和不稳定性的影响。在这一行中,我们研究了这种系统调用输入输出稳定性方法的稳定性。通过考虑延迟速率和随时间变化的延迟不确定性的明确界限,采用了缩放的小增生定理,以形成一个互连的时间延迟LPV系统,其中引入了用于不确定动力学的辅助系统的输入和输出向量。对于这种相互连接的时间延迟LPV系统,构建了Lyapunov-Krasovskii功能(LKF)的构建,其衍生物与描述符方法产生的术语相增强。然后,稳定性条件和规定的诱导的L2-Norm在扰动排斥性能方面以凸线性矩阵不等式(LMIS)设置得出。随后,一致的转换使我们能够为具有不确定时变延迟的一类LPV系统计算一个增益为计划的状态反馈控制器。作为基准,我们检查了患有低血压的个体中自动平均动脉血压(MAP)控制,其中MAP响应动态对药物输注的动力学在时间延迟的LPV表示中被表征。最后,提供了闭环模拟结果,以证明提供的方法的性能。
Linear parameter-varying (LPV) systems with uncertainty in time-varying delays are subject to performance degradation and instability. In this line, we investigate the stability of such systems invoking an input-output stability approach. By considering explicit bounds on the delay rate and time-varying delay uncertainty, the scaled small-gain theorem is adopted to form an interconnected time-delay LPV system with input and output vectors of the auxiliary system introduced for the uncertain dynamics. For such an interconnected time-delay LPV system subject to external disturbances, a Lyapunov-Krasovskii functional (LKF) is constructed whose derivative is augmented with the terms resulted from the descriptor method. Then, stability conditions and a prescribed induced L2-norm in terms of the disturbance rejection performance are derived in a convex linear matrix inequalities (LMIs) setting. Subsequently, a congruent transformation enables us to compute a gain-scheduled state-feedback controller for a class of LPV systems with an uncertain time-varying delay. As a benchmark, we examine the automated mean arterial blood pressure (MAP) control in an individual with hypotension where the MAP response dynamics to drug infusion is characterized in a time-delay LPV representation. Finally, the closed-loop simulation results are provided to demonstrate the provided methodology's performance.