论文标题

贝尔定理中的算术漏洞:纠缠量子密码学的被忽视的威胁

Arithmetic loophole in Bell's theorem: An overlooked threat to entangled-state quantum cryptography

论文作者

Czachor, Marek

论文摘要

贝尔的定理应该排除所有量子相关的所有局部隐藏变量模型。但是,一个明确的反例显示,基于广义算术和演算的新一类局部现实模型可以精确地重建旋转的旋转对称量子概率,典型的两电子单元状态。可观察的概率与宏观观察者使用的通常算术相一致,但是贝尔定理的反事实方面对选择隐藏可变性的算术和算术的选择敏感。从爱因斯坦,波多尔斯基,罗森和贝尔的意义上讲,该模型是经典的:现实的元素存在,概率是由隐藏可变性概率密度的积分建模的。概率密度具有典型的局部现实理论的clauser-horne产品。但是,产品,积分或旋转的代表都不是通常的。积分具有所有标准属性,但仅相对于定义产品的算术。人们在通常的证据中发现的某些正式转换不可行,因此无法证明标准的铃铛型不平等。我们认为的系统是确定性的,地方现实的,旋转不变的,观察者具有自由意志,检测器是完美的,因此没有文献中讨论的所有规范漏洞。

Bell's theorem is supposed to exclude all local hidden-variable models of quantum correlations. However, an explicit counterexample shows that a new class of local realistic models, based on generalized arithmetic and calculus, can exactly reconstruct rotationally symmetric quantum probabilities typical of two-electron singlet states. Observable probabilities are consistent with the usual arithmetic employed by macroscopic observers, but counterfactual aspects of Bell's theorem are sensitive to the choice of hidden-variable arithmetic and calculus. The model is classical in the sense of Einstein, Podolsky, Rosen, and Bell: elements of reality exist and probabilities are modeled by integrals of hidden-variable probaility densities. Probability densities have a Clauser-Horne product form typical of local realistic theories. However, neither the product nor the integral nor the representation of rotations are the usual ones. The integral has all the standard properties but only with respect to the arithmetic that defines the product. Certain formal transformations of integral expressions one finds in the usual proofs à la Bell do not work, so standard Bell-type inequalities cannot be proved. The system we consider is deterministic, local-realistic, rotationally invariant, observers have free will, detectors are perfect, so is free of all the canonical loopholes discussed in the literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源