论文标题

域分解预处理,用于异质Helmholtz方程的高级离散

Domain decomposition preconditioners for high-order discretisations of the heterogeneous Helmholtz equation

论文作者

Gong, Shihua, Graham, Ivan G., Spence, Euan A.

论文摘要

我们考虑具有可变系数的Helmholtz方程(在异质介质中的建模波传播)的一级加性Schwarz结构域分解预处理,但要遵守包括波散射问题的边界条件。吸收作为参数包括在问题中。使用直径与直径$ h = h(k)$的网格上的固定本地度$ p $的$ h^1 $ - 合格的淋巴结元素进行离散问题,以使该错误仍与增加$ k $的增加有关。一级预处理的作用由子域上的问题的平行解(可以是一般几何形状)组成,每个域都配备了阻抗边界条件。我们证明了对左或右键基质的标准和值的严格估计,这些矩阵明确显示了如何吸收,系数中的异质性以及对度的依赖性输入估计值。这些估计严格地证明,通过足够的吸收,对于$ k $,gmres可以保证在许多迭代中汇聚,这些迭代与$ k,p,$及其系数无关。 $ k $的理论阈值足够大,取决于$ p $以及子域中系数的局部变化(而不是全球)。对吸收和传播病例进行了广泛的数值实验。在后一种情况下,我们研究了系数不陷入捕获和捕获时的示例。这些实验(i)在依赖多项式程度和系数方面支持我们的理论; (ii)根据所需的吸收水平支持我们的值估计领域的清晰度。

We consider one-level additive Schwarz domain decomposition preconditioners for the Helmholtz equation with variable coefficients (modelling wave propagation in heterogeneous media), subject to boundary conditions that include wave scattering problems. Absorption is included as a parameter in the problem. This problem is discretised using $H^1$-conforming nodal finite elements of fixed local degree $p$ on meshes with diameter $h = h(k)$, chosen so that the error remains bounded with increasing $k$. The action of the one-level preconditioner consists of the parallel solution of problems on subdomains (which can be of general geometry), each equipped with an impedance boundary condition. We prove rigorous estimates on the norm and field of values of the left- or right-preconditioned matrix that show explicitly how the absorption, the heterogeneity in the coefficients and the dependence on the degree enter the estimates. These estimates prove rigorously that, with enough absorption and for $k$ large enough, GMRES is guaranteed to converge in a number of iterations that is independent of $k,p,$ and the coefficients. The theoretical threshold for $k$ to be large enough depends on $p$ and on the local variation of coefficients in subdomains (and not globally). Extensive numerical experiments are given for both the absorptive and the propagative cases; in the latter case we investigate examples both when the coefficients are nontrapping and when they are trapping. These experiments (i) support our theory in terms of dependence on polynomial degree and the coefficients; (ii) support the sharpness of our field of values estimates in terms of the level of absorption required.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源