论文标题
具有三重点的退化K3表面的全球平滑光滑
Global smoothings of degenerate K3 surfaces with triple points
论文作者
论文摘要
令$ x $为带有三重点的普通交叉紧凑型复合体。我们证明,当$ x $满足合适的条件时,存在$ x $的平滑家庭。由于我们的差异几何证明也包括$ x $既不是kählerian也不是$ h^1(x,\ mathcal o_x)= 0 $的情况,因此这概括了弗里德曼(Friedman)对代数几何形状中$ k3 $表面的退化的结果。
Let $X$ be a normal crossing compact complex surface with triple points. We prove that there exists a family of smoothings of $X$ when $X$ satisfies suitable conditions. Since our differential geometric proof also includes the case where $X$ is neither Kählerian nor $H^1(X, \mathcal O_X)=0$, this generalizes Friedman's result on degenerations of $K3$ surfaces in algebraic geometry.