论文标题

新的Turán指数,用于两个极端超毛皮问题

New Turán exponents for two extremal hypergraph problems

论文作者

Shangguan, Chong, Tamo, Itzhak

论文摘要

如果任何$ t+2 $不同的边缘,$ r $ - 均匀的超图称为$ t $ cancellative $ a_1,\ ldots,a_t,b,c $,它认为$(\ cup_ {\ cup_ {i = 1}^t a_i)\ cup b \ neq b \ neq(\ cup_ \ cup_ {\ cup_ {i = 1}^t a_i)如果对于任何两个不同的子集$ \ MATHCAL {a},\ MATHCAL {B} $,则称为$ t $ - union-fim-fim-form-union-fim-union,每个都包含$ \ cup_ {a \ in \ mathcal {a} a} a \ neq \ neq \ cup_ b \ b \ b \ b $ b \ b $ b \ b \ b \ b \ b \ b \ b \ b $令$ c_t(n,r)$(分别$ u_t(n,r)$)表示$ t $ cancellative的最大边数(resp。$ t $ tumion-free)$ r $ r $ -r $均匀的超透明图。除其他结果外,我们表明,对于固定$ r \ ge 3,t \ ge 3 $和$ n \ rightarrow \ infty $ $$ω(n^{\ lfloor \ frac {2r} {t+2} \ rfloor+\ frac {2r \ pmod {t+2}} {t+1}} {t+1}}}}} = c_t(n^,r) t/2 \ rfloor+1} \ rceil})\ text {and}ω(n^{\ frac {\ frac {r} {t-1}})= u_t(n,r)= o(n^{n^{\ lceil \ lceil \ frac \ frac {r}边界。特别是,当$ 2 \ mid t \ text {and}(t/2+1)\ mid r $和$ u_t(n,r)$时,当$ 2 \ text {and} $ 2 \ text {and}时,我们确定$ c_t(n,r)$的turán指数。 证明这两个下限的主要工具是这些问题与稀疏超图之间的新联系。

An $r$-uniform hypergraph is called $t$-cancellative if for any $t+2$ distinct edges $A_1,\ldots,A_t,B,C$, it holds that $(\cup_{i=1}^t A_i)\cup B\neq (\cup_{i=1}^t A_i)\cup C$. It is called $t$-union-free if for any two distinct subsets $\mathcal{A},\mathcal{B}$, each consisting of at most $t$ edges, it holds that $\cup_{A\in\mathcal{A}} A\neq \cup_{B\in\mathcal{B}} B$. Let $C_t(n,r)$ (resp. $U_t(n,r)$) denote the maximum number of edges of a $t$-cancellative (resp. $t$-union-free) $r$-uniform hypergraph on $n$ vertices. Among other results, we show that for fixed $r\ge 3,t\ge 3$ and $n\rightarrow\infty$ $$Ω(n^{\lfloor\frac{2r}{t+2}\rfloor+\frac{2r\pmod{t+2}}{t+1}})=C_t(n,r)=O(n^{\lceil\frac{r}{\lfloor t/2\rfloor+1}\rceil})\text{ and } Ω(n^{\frac{r}{t-1}})=U_t(n,r)=O(n^{\lceil\frac{r}{t-1}\rceil}),$$ thereby significantly narrowing the gap between the previously known lower and upper bounds. In particular, we determine the Turán exponent of $C_t(n,r)$ when $2\mid t \text{ and } (t/2+1)\mid r$, and of $U_t(n,r)$ when $(t-1)\mid r$. The main tool used in proving the two lower bounds is a novel connection between these problems and sparse hypergraphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源