论文标题
关于立方体的部分
On the volume of sections of the cube
论文作者
论文摘要
我们研究了$ n $二维立方体$ [ - 1,1]^n $的最大体积$ k $二维部分的属性。我们获得了$ k $维的子空间的必要条件,使其成为此类部分的局部最大化器,我们以几何方式制定了该部分。我们将$ \ mathbb {r}^n $标准基础的向量的投影的长度估计到$ k $二维子空间,从而最大化交叉点的音量。我们在Cube $ [-1,1]^n,$ $ n \ geq 2的平面部分的体积上找到了最佳上限。
We study the properties of the maximal volume $k$-dimensional sections of the $n$-dimensional cube $[-1,1]^n$. We obtain a first order necessary condition for a $k$-dimensional subspace to be a local maximizer of the volume of such sections, which we formulate in a geometric way. We estimate the length of the projection of a vector of the standard basis of $\mathbb{R}^n$ onto a $k$-dimensional subspace that maximizes the volume of the intersection. We find the optimal upper bound on the volume of a planar section of the cube $[-1,1]^n,$ $n \geq 2.$