论文标题

解决线性海森贝格 - 图片动力学和高斯测量噪声的系统的量子轨迹

Solving quantum trajectories for systems with linear Heisenberg-picture dynamics and Gaussian measurement noise

论文作者

Warszawski, P., Wiseman, H. M., Doherty, A. C.

论文摘要

我们研究了$ n $ mode开放量子系统的量子轨迹演化的解决方案,该系统具有时间无关的哈密顿量,线性海森伯格 - 薄膜动力学和高斯测量噪声。就模式歼灭和创建操作员而言,系统将在两个条件下具有线性海森堡 - 图片动力学。首先,哈密顿人必须是二次的。其次,描述与环境耦合(包括对应于测量值的耦合)的Lindblad操作员必须是线性的。如果我们可以解决计算中出现的$ 2N $度量多项式的情况,我们为任意的初始状态提供了一个分析解决方案(即,不需要它们具有高斯的Wigner函数)。该解决方案采用了进化操作员的形式,在这些经典的随机信号上,测量值依赖性以$ 2N $的随机积分捕获。这些解决方案还允许确定获得测量结果的概率的POVM。为了说明我们的结果,我们通过量子状态层析成像解决了一些单模示例系统,而POVM与初始状态的推断具有实际相关性。我们的关键工具是将量子机械振荡器的混合状态表示为状态向量而不是状态矩阵(尽管在较大的希尔伯特空间中)。与Lie代数的方法一起,与原始希尔伯特空间中的可能性相比,该指数运算符的操作更直接。

We study solutions to the quantum trajectory evolution of $N$-mode open quantum systems possessing a time-independent Hamiltonian, linear Heisenberg-picture dynamics, and Gaussian measurement noise. In terms of the mode annihilation and creation operators, a system will have linear Heisenberg-picture dynamics under two conditions. First, the Hamiltonian must be quadratic. Second, the Lindblad operators describing the coupling to the environment (including those corresponding to the measurement) must be linear. In cases where we can solve the $2N$-degree polynomials that arise in our calculations, we provide an analytical solution for initial states that are arbitrary (i.e. they are not required to have Gaussian Wigner functions). The solution takes the form of an evolution operator, with the measurement-result dependence captured in $2N$ stochastic integrals over these classical random signals. The solutions also allow the POVM, which generates the probabilities of obtaining measurement outcomes, to be determined. To illustrate our results, we solve some single-mode example systems, with the POVMs being of practical relevance to the inference of an initial state, via quantum state tomography. Our key tool is the representation of mixed states of quantum mechanical oscillators as state vectors rather than state matrices (albeit in a larger Hilbert space). Together with methods from Lie algebra, this allows a more straightforward manipulation of the exponential operators comprising the system evolution than is possible in the original Hilbert space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源