论文标题
随机图灵模式的精确和耗散
Precision and dissipation of a stochastic Turing pattern
论文作者
论文摘要
自从对反应扩散系统的开明理论工作以来,自发模式形成是一个基本的科学问题,它引起了很多关注。在分子生物物理学中,这种现象通常发生在大波动的影响下。这样很自然地询问这种模式的精度。特别是,自发的模式形成是一种非平衡现象,并且模式的精度与与其相关的热力学成本之间的关系仍然没有探索。在这里,我们使用范式的随机反应扩散模型分析了这种关系,即一个空间维度的Brusselator。我们发现,对于中间热力学成本,即最大化模式的精度,即,将热力学成本提高到超出此值的情况使模式不那么精确。即使波动越来越明显,热力学成本的增加,我们认为较大的波动也会对模式的精度产生积极影响。
Spontaneous pattern formation is a fundamental scientific problem that has received much attention since the seminal theoretical work of Turing on reaction-diffusion systems. In molecular biophysics, this phenomena often takes place under the influence of large fluctuations. It is then natural to inquire about the precision of such pattern. In particular, spontaneous pattern formation is a nonequilibrium phenomenon, and the relation between the precision of a pattern and the thermodynamic cost associated with it remains unexplored. Here, we analyze this relation with a paradigmatic stochastic reaction-diffusion model, the Brusselator in one spatial dimension. We find that the precision of the pattern is maximized for an intermediate thermodynamic cost, i.e., increasing the thermodynamic cost beyond this value makes the pattern less precise. Even though fluctuations get less pronounced with an increase in thermodynamic cost, we argue that larger fluctuations can also have a positive effect on the precision of the pattern.