论文标题
协变汉密尔顿人,西格玛模型和超对称性
Covariant Hamiltonians, sigma models and supersymmetry
论文作者
论文摘要
我们为2D超对称(1,1)Sigma模型引入了带有旋转力量的相位空间,该相位空间对应于费米子衍生物。我们表明,在此相空间上,在该相空间上具有与拉格朗日公式相等的规范方程式在此相空间上有一个概括的概括,找到相应的多链型形式和汉密尔顿多生。该配方的协方差使您有可能以类似于拉格朗日公式的额外的非手感超对称性。然后,我们观察到,在切线和cotanget空间之和上定义的中间相位空间是Sigma模型的一阶Lagrangian,并为此得出了其他超对称性。
We introduce a phase space with spinorial momenta, corresponding to fermionic derivatives, for a 2d supersymmetric (1, 1) sigma model. We show that there is a generalisation of the covariant De Donder-Weyl Hamiltonian formulation on this phase space with canonical equations equivalent to the Lagrangian formulation, find the corresponding multisymplectic form and Hamiltonian multivectors. The covariance of the formulation makes it possible to see how additional non-manifest supersymmetries arise in analogy to those of the Lagrangian formulation. We then observe that an intermediate phase space Lagrangian defined on the sum of the tangent and cotanget spaces is a first order Lagrangian for the sigma model and derive additional supersymmetries for this.