论文标题
奇数Khovanov缠结的同源性
Odd Khovanov homology for tangles
论文作者
论文摘要
我们使用ARC代数将均匀和奇数的Khovanov链接到缠结的覆盖范围。为此,我们开发了与3循环的类别分级分级的准缔合代数和双模型的理论。此外,我们表明,覆盖2级循环的半循环2-kac-moody代数在覆盖的弧代数上对准缔合双模型的生物作用,将我们的作品与VAZ的结构有关。
We extend the covering of even and odd Khovanov link homology to tangles, using arc algebras. For this, we develop the theory of quasi-associative algebras and bimodules graded over a category with a 3-cocycle. Furthermore, we show that a covering version of a level 2 cyclotomic half 2-Kac--Moody algebra acts on the bicategory of quasi-associative bimodules over the covering arc algebras, relating our work to a construction of Vaz.