论文标题

$ k^π的属性= 0^+_ 1 $,$ k^π= 2^ - $,$ k^π= 0^-_ 1 $ band of $^{20} $ ne通过Proton和Alpha Inthpha弹药探测

Properties of $K^π=0^+_1$, $K^π=2^-$, and $K^π=0^-_1$ bands of $^{20}$Ne probed via proton and alpha inelastic scattering

论文作者

Kanada-En'yo, Yoshiko, Ogata, Kazuyuki

论文摘要

$ k^π= 0^+_ 1 $,$ k^π= 2^ - $,$ k^π= 0^-_ 1 $ $^{20} $ ne的带,通过质子和$α$弹药散射$^{20} $ ne进行了微观结构和反应计算。 $^{20} $ ne的结构是在平等后的变化和反对称分子动力学(AMD)中的总角动量投影计算的。 $ k^π= 0^+_ 1 $和$ k^π= 0^-_ 1 $ bands具有$^{16} \ textrm {o}+α$ cluster结构,而$ k^π= 2^ - $ band显示a $^{12}} {12}} \ textrm {C} \ textrm {c}+2α$ - $ - $ - $ - 样结构。质子和$α$散射$^{20} $ ne的显微耦合通道计算是通过使用质子核和$α$ -Nucleus电位来执行的,这些潜力是通过折叠墨尔本$ g $ g $ -Matrix $ nn $与Amd umd untaction clance dens clance cole t in ommd $ nn $ nne来得出的。该计算合理地重现了$ e_p = 25 $ - 35 meV和$α$散射的观察到的质子散射的横截面,$e_α= 104 $ - 386 meV。通过质子和$α$非弹性过程的反应分析来讨论从地面到激发态的过渡性能。 $ k^π= 2^ - $和$ k^π= 0^-_ 1 $ bands通过详细分析$ 0^+_ 1 \ to 3^-_ 1 $和$ 0^+_ 1 \ to 3^-_ 2 $ trantitions讨论。对于$ 3^-_ 1 $状态,在$ k^π= 2^ - $ band中的$ k^π= 0^-_ 1 $ cluster组件的混合在过渡属性中起重要作用。

The $K^π=0^+_1$, $K^π=2^-$, and $K^π=0^-_1$ bands of $^{20}$Ne are investigated with microscopic structure and reaction calculations via proton and $α$ inelastic scattering off $^{20}$Ne. Structures of $^{20}$Ne are calculated with variation after parity and total angular momentum projections in the antisymmetrized molecular dynamics(AMD). The $K^π=0^+_1$ and $K^π=0^-_1$ bands have $^{16}\textrm{O}+α$ cluster structures, whereas the $K^π=2^-$ band shows a $^{12}\textrm{C}+2α$-like structure. Microscopic coupled-channel calculations of proton and $α$ scattering off $^{20}$Ne are performed by using the proton-nucleus and $α$-nucleus potentials, which are derived by folding the Melbourne $g$-matrix $NN$ interaction with AMD densities of $^{20}$Ne. The calculation reasonably reproduces the observed cross sections of proton scattering at $E_p=25$--35 MeV and $α$ scattering at $E_α=104$--386 MeV. Transition properties from the ground to excited states are discussed by reaction analyses of proton and $α$ inelastic processes. Mixing of the $K^π=2^-$ and $K^π=0^-_1$ bands is discussed by detailed analysis of the $0^+_1\to 3^-_1$ and $0^+_1\to 3^-_2$ transitions. For the $3^-_1$ state, mixing of the $K^π=0^-_1$ cluster component in the $K^π=2^-$ band plays an important role in the transition properties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源