论文标题

了解几乎没有电子金属中的等离子体分散:在时间依赖性密度功能理论中,精确约束与新型交换相关内核的相关性

Understanding plasmon dispersion in nearly-free-electron metals: the relevance of exact constraints for novel exchange-correlation kernels within time-dependent density functional theory

论文作者

Nepal, Niraj K., Adhikari, Santosh, Neupane, Bimal, Ruan, Shiqi, Neupane, Santosh, Ruzsinszky, Adrienn

论文摘要

库仑相互作用系统中的小波向量激发可以分解为高能集体纵向等离子体和低能单电子激发。在临界波形和相应的频率下,等离子体分支与单电子激发区合并,等离子体的集体能量将耗散成单电子孔激发。 Jellium模型提供了接近自由电子极限的金属的电子 - 能量 - 损耗光谱(EEL)的合理描述。随机相位近似(RPA)在高密度极限中精确,但在此处研究的rs> 1的密度和所有超过RPA方法的密度也可以合理地捕获等离子色散,从而导致错误的无限等离子体生命周期,对于小于Plasmon分散曲线的关键波动率较小的波形效果,使Plasmon分散曲线流入粒子界面上。交换相关的内核校正RPA修改了等离子体分散曲线。但是,前面研究的内核的构建和形式存在很大差异。我们当前的工作介绍了最新的模型交换和交换相关内核,并讨论了一些确切的限制在内核构建中的相关性。我们表明,由于等离子体分散样品样品的一系列波形范围小于相关能量所采样的范围,因此不同的内核可以对相关能量产生强大的差异,而对于等离子体的差异,对等离子体的差异可能会产生弱差。这项工作使我们对逼真的金属(例如CS)中的等离子体分散剂的理解完成了观察到的负等离子体分散体。我们发现在CS密度下仅在jellium中的阳性等离子体分散。

Small-wavevector excitations in Coulomb-interacting systems can be decomposed into the high-energy collective longitudinal plasmon and the low-energy single-electron excitations. At the critical wavevector and corresponding frequency where the plasmon branch merges with the single-electron excitation region, the collective energy of the plasmon dissipates into single electron-hole excitations. The jellium model provides a reasonable description of the electron-energy-loss spectrum (EELS) of metals close to the free-electron limit. The random phase approximation (RPA) is exact in the high-density limit but can capture the plasmonic dispersion reasonably even for densities with rs > 1. RPA and all beyond-RPA methods investigated here, result in a wrong infinite plasmon lifetime for a wavevector smaller than the critical one where the plasmon dispersion curve runs into particle-hole excitations. Exchange-correlation kernel corrections to RPA modify the plasmon dispersion curve. There is however a large difference in the construction and form of the kernels investigated earlier. Our current work introduces recent model exchange-only and exchange-correlation kernels and discusses the relevance of some exact constraints in the construction of the kernel. We show that, because the plasmon dispersion samples a range of wavevectors smaller than the range sampled by the correlation energy, different kernels can make a strong difference for the correlation energy and a weak difference for the plasmon dispersion. This work completes our understanding about the plasmon dispersion in realistic metals, such as Cs, where a negative plasmon dispersion has been observed. We find only positive plasmon dispersion in jellium at the density for Cs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源