论文标题

线性混合模型在移动健康中的简化经验贝叶斯拟合

Streamlined Empirical Bayes Fitting of Linear Mixed Models in Mobile Health

论文作者

Menictas, Marianne, Tomkins, Sabina, Murphy, Susan A

论文摘要

为了实现行为改变,成功的算法必须实时做出高质量的决策。例如,旨在增加体育活动的移动健康(MHealth)应用程序必须提出与上下文相关的建议,以激发用户。尽管机器学习为某些程式化设置提供了解决方案,例如何时可以离线处理批处理数据,但缺乏方法可以在MHealth的特定限制下提供高质量的解决方案。我们提出了一种算法,该算法为用户提供了上下文化和个性化的体育活动建议。该算法能够克服对MHealth至关重要的挑战,即有效地训练复杂的模型。我们提出了一种可拖延的简化经验贝叶斯程序,该程序拟合了大数据设置中的线性混合效应模型。我们的过程利用了通过层次随机效应引入的稀疏性,以有效地了解线性混合效应模型的后验分布。这项工作的关键贡献是我们提供明确的更新,以学习固定效果,随机效果和超参数值。我们证明了这种方法在移动健康(MHealth)增强学习应用程序中的成功,该域中快速计算对于实时干预至关重要。我们的方法不仅在计算上有效,而且还可以通过封闭形式的矩阵代数更新轻松实现,并且我们在速度和准确性分别表现出对最高99%和56%的最高速度和准确性的改进。

To effect behavior change a successful algorithm must make high-quality decisions in real-time. For example, a mobile health (mHealth) application designed to increase physical activity must make contextually relevant suggestions to motivate users. While machine learning offers solutions for certain stylized settings, such as when batch data can be processed offline, there is a dearth of approaches which can deliver high-quality solutions under the specific constraints of mHealth. We propose an algorithm which provides users with contextualized and personalized physical activity suggestions. This algorithm is able to overcome a challenge critical to mHealth that complex models be trained efficiently. We propose a tractable streamlined empirical Bayes procedure which fits linear mixed effects models in large-data settings. Our procedure takes advantage of sparsity introduced by hierarchical random effects to efficiently learn the posterior distribution of a linear mixed effects model. A key contribution of this work is that we provide explicit updates in order to learn both fixed effects, random effects and hyper-parameter values. We demonstrate the success of this approach in a mobile health (mHealth) reinforcement learning application, a domain in which fast computations are crucial for real time interventions. Not only is our approach computationally efficient, it is also easily implemented with closed form matrix algebraic updates and we show improvements over state of the art approaches both in speed and accuracy of up to 99% and 56% respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源