论文标题
在贝林森纤维广场上
On the Beilinson fiber square
论文作者
论文摘要
使用拓扑循环同源性,我们对贝林森的$ p $ addic商誉同构和相对连续$ k $ - 理论和环状同源性之间进行了改进。结果,我们将Bloch-Esnault-Kerz和Beilinson的结果推广到$ k $ - 理论类的$ p $ -ADIC变形上。此外,我们证明了Bhatt-Morrow-Scholze过滤$ TC $的结构性结果,并通过Fontaine-Messing的语法共同体来识别分级零件。
Using topological cyclic homology, we give a refinement of Beilinson's $p$-adic Goodwillie isomorphism between relative continuous $K$-theory and cyclic homology. As a result, we generalize results of Bloch-Esnault-Kerz and Beilinson on the $p$-adic deformations of $K$-theory classes. Furthermore, we prove structural results for the Bhatt-Morrow-Scholze filtration on $TC$ and identify the graded pieces with the syntomic cohomology of Fontaine-Messing.