论文标题

Choquet积分作为与密度矩阵的近似值,并具有不完整的信息

The Choquet integral as an approximation to density matrices with incomplete information

论文作者

Vourdas, A.

论文摘要

总计$ n $状态$ | i \ rangle $和相应的投影仪$π(i)= | i \ rangle \ langle i | $,在带有$ d $ d $ d $ d $ d $ d $ d $ d $ d $ dimensional hilbert space $ h(d)$的量子系统中。考虑到给定$ p(i)= {\ rm tr} [ρπ(i)] $的部分知名密度矩阵$ρ$(其中$ i = 1,...,n $和n $和$ d \ le n \ le n \ le d^2-1 $)。它用于计算Choquet积分$ {\ cal c}(ρ)$,这是一个积极的半明确遗产矩阵。共音性是形式主义中的一个重要概念,该概念用于使物理相似密度矩阵的模糊概念形式化。结果表明,$ {\ cal c}(ρ)/{\ rm tr} [{\ cal c}(ρ)] $是一个密度矩阵,是与部分已知的密度矩阵$ρ$的良好近似值。

A total set of $n$ states $|i\rangle$ and the corresponding projectors $Π(i)=|i\rangle \langle i|$ are considered, in a quantum system with $d$-dimensional Hilbert space $H(d)$. A partially known density matrix $ρ$ with given $p(i)={\rm Tr}[ρΠ(i)]$ (where $i=1,...,n$ and $d\le n\le d^2-1$) is considered, and its ranking permutation is defined. It is used to calculate the Choquet integral ${\cal C}(ρ)$ which is a positive semi-definite Hermitian matrix. Comonotonicity is an important concept in the formalism, which is used to formalise the vague concept of physically similar density matrices. It is shown that ${\cal C}(ρ)/{\rm Tr}[{\cal C}(ρ)]$ is a density matrix which is a good approximation to the partially known density matrix $ρ$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源