论文标题
Smoluchowski的凝结方程与可解决的内核的凝结
Contractivity for Smoluchowski's coagulation equation with solvable kernels
论文作者
论文摘要
我们表明,Smoluchowski凝血方程式具有可解决的核$ K(x,y)$等于$ 2 $,$ x+y $或$ xy $的$ K(x,y)$在适当的拉普拉斯规范中具有承诺。特别是,这证明了在这些规范中呈指数融合到自相似的轮廓。这些结果与Boltzmann类型方程的Maxwell模型的类似属性平行,并将指数收敛的现有结果扩展到Smoluchowski凝结方程的自相似性。
We show that the Smoluchowski coagulation equation with the solvable kernels $K(x,y)$ equal to $2$, $x+y$ or $xy$ is contractive in suitable Laplace norms. In particular, this proves exponential convergence to a self-similar profile in these norms. These results are parallel to similar properties of Maxwell models for Boltzmann-type equations, and extend already existing results on exponential convergence to self-similarity for Smoluchowski's coagulation equation.