论文标题

Smoluchowski的凝结方程与可解决的内核的凝结

Contractivity for Smoluchowski's coagulation equation with solvable kernels

论文作者

Cañizo, José A., Lods, Bertrand, Throm, Sebastian

论文摘要

我们表明,Smoluchowski凝血方程式具有可解决的核$ K(x,y)$等于$ 2 $,$ x+y $或$ xy $的$ K(x,y)$在适当的拉普拉斯规范中具有承诺。特别是,这证明了在这些规范中呈指数融合到自相似的轮廓。这些结果与Boltzmann类型方程的Maxwell模型的类似属性平行,并将指数收敛的现有结果扩展到Smoluchowski凝结方程的自相似性。

We show that the Smoluchowski coagulation equation with the solvable kernels $K(x,y)$ equal to $2$, $x+y$ or $xy$ is contractive in suitable Laplace norms. In particular, this proves exponential convergence to a self-similar profile in these norms. These results are parallel to similar properties of Maxwell models for Boltzmann-type equations, and extend already existing results on exponential convergence to self-similarity for Smoluchowski's coagulation equation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源