论文标题
简单纯粹的无限$ c^*$ - 与普通子迁移相关的代数
Simple purely infinite $C^*$-algebras associated with normal subshifts
论文作者
论文摘要
我们将介绍一个正常的子缩影概念。如果满足某些同步属性,称为$λ$ - 同步,并且是无限的,则据说它是正常的。我们有许多纯粹的无限简单$ c^*$ - 来自普通子班的代数,包括不可约束的无限sofic偏移,戴克偏移,$β$换档等。以相关的$ c^*$ - 代数和相关的稳定稳定的$ c^*$ - 代数分别与其斜向和量表动作的相关稳定性稳定性稳定的$ c^*$ - 代数和相关的稳定性稳定的代数和相关的稳定性稳定性,将单方面的正常子降低和双向正常子降低的拓扑结合的最终结合。
We will introduce a notion of normal subshifts. A subshift $(Λ,σ)$ is said to be normal if it satisfies a certain synchronizing property called $λ$-synchronizing and is infinite as a set. We have lots of purely infinite simple $C^*$-algebras from normal subshifts including irreducible infinite sofic shifts, Dyck shifts, $β$-shifts, and so on. Eventual conjugacy of one-sided normal subshifts and topological conjugacy of two-sided normal subshifts are characterized in terms of the associated $C^*$-algebras and the associated stabilized $C^*$-algebras with its diagonals and gauge actions, respectively.