论文标题
粒子共振和激光型引起的直接激光加速度的捕获
Particle resonances and trapping of direct laser acceleration in a laser-plasma channel
论文作者
论文摘要
作为激光驱动不足等离子体的领先加速机制之一,直接激光加速度(DLA)能够在等离子通道中生成高能密度的电子束以用于许多应用。但是,该机制依赖于高度非线性的颗粒激光共振,使其建模和控制变得非常具有挑战性。在这里,我们报告了粒子共振的新物理学,并基于此,定义了通往更具控制DLA的潜在路径。关键发现是通过在综合模型中独立处理电子传播角来获得的。这种方法揭示了整个粒子在广泛的繁殖角上的共振,即近似/非帕克斯动力学主导的物理机制,这是不同谐波的统一图片,以及至关重要的,是这些粒子共振的物理可访问性。这些新见解可以具有重要的含义,我们将粒子陷阱的基本问题作为一个例子。我们展示了发现的捕获参数空间如何导致更好的加速控制。讨论了这种基本类型的加速度的发展。
As one of the leading acceleration mechanisms in laser-driven underdense plasmas, direct laser acceleration (DLA) is capable of producing high-energy-density electron beams in a plasma channel for many applications. However, the mechanism relies on highly nonlinear particle-laser resonances, rendering its modeling and control to be very challenging. Here, we report on novel physics of the particle resonances and, based on that, define a potential path toward more controlled DLA. Key findings are acquired by treating the electron propagation angle independently within a comprehensive model. This approach uncovers the complete particle resonances over broad propagation angles, the physical regimes under which paraxial/non-paraxial dynamics dominates, a unified picture for different harmonics, and crucially, the physical accessibility to these particle resonances. These new insights can have important implications where we address the basic issue of particle trapping as an example. We show how the uncovered trapping parameter space can lead to better acceleration control. More implications for the development of this basic type of acceleration are discussed.