论文标题

Banach Lattices中的正多项式Schur属性

The positive polynomial Schur property in Banach lattices

论文作者

Botelho, Geraldo, Luiz, José Lucas P.

论文摘要

我们研究了积极的多项式schur的Banach晶格类别。提供了大量的例子和反例,证明了该类别的晶格特性,显示任意的$ L_P(μ)$ - 空间被证明是积极的多种方面的Schur,获得了Banach空间上结果的晶格类似物,并与正面的Schur和较弱的Dunford Petties建立了与阳性的关系。

We study the class of Banach lattices that are positively polynomially Schur. Plenty of examples and counterexamples are provided, lattice properties of this class are proved, arbitrary $L_p(μ)$-spaces are shown to be positively polynomially Schur, lattice analogues of results on Banach spaces are obtained and relationships with the positive Schur and the weak Dunford-Pettis properties are established.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源