论文标题
Banach Lattices中的正多项式Schur属性
The positive polynomial Schur property in Banach lattices
论文作者
论文摘要
我们研究了积极的多项式schur的Banach晶格类别。提供了大量的例子和反例,证明了该类别的晶格特性,显示任意的$ L_P(μ)$ - 空间被证明是积极的多种方面的Schur,获得了Banach空间上结果的晶格类似物,并与正面的Schur和较弱的Dunford Petties建立了与阳性的关系。
We study the class of Banach lattices that are positively polynomially Schur. Plenty of examples and counterexamples are provided, lattice properties of this class are proved, arbitrary $L_p(μ)$-spaces are shown to be positively polynomially Schur, lattice analogues of results on Banach spaces are obtained and relationships with the positive Schur and the weak Dunford-Pettis properties are established.