论文标题

高级牛顿的牛仔动力学模型的粘液动力学流动性流动性的流动性

Advanced Newton Methods for Geodynamical Models of Stokes Flow with Viscoplastic Rheologies

论文作者

Rudi, Johann, Shih, Yu-hsuan, Stadler, Georg

论文摘要

应变定位以及导致的可塑性和失效在岩石圈的演变中起重要作用。这些现象通常是由粘膜流变学的Stokes流动建模的。这些流变学的非线性使得最终系统具有挑战性的数值解,并且迭代方法通常会缓慢或根本不收敛。然而,准确的解决方案对于代表物理学至关重要。此外,对于某些流变学法律,解决性的各个方面仍然未知。我们研究了一项基本但代表性的粘塑性流变性法。法律涉及独立于动态压力的屈服应力,称为von mises屈服标准。比较了两个常用的变体,完美/理想和复合粘塑性。我们从能量最小化原理中得出了这两个变体,我们利用这种观点来争论解决方案何时独特。我们提出了一种新的应力速度牛顿解决方案算法,该算法将应力视为牛顿线性化期间的自变量,但仅需要解决通常速度压力形式的Stokes系统的解决方案。为了研究不同的溶液算法,我们实施了2D和3D有限元离散化,并产生了具有多达7个数量级粘度对比度的Stokes问题,其中压缩或张力会导致显着的非线性定位效应。将提出的牛顿方法的性能与标准牛顿方法和PICARD定点方法进行比较,我们观察到迭代次数的数量显着降低,并且在问题的非线性,网格细化和离散化的多项式方面方面有了改善的稳定性。

Strain localization and resulting plasticity and failure play an important role in the evolution of the lithosphere. These phenomena are commonly modeled by Stokes flows with viscoplastic rheologies. The nonlinearities of these rheologies make the numerical solution of the resulting systems challenging, and iterative methods often converge slowly or not at all. Yet accurate solutions are critical for representing the physics. Moreover, for some rheology laws, aspects of solvability are still unknown. We study a basic but representative viscoplastic rheology law. The law involves a yield stress that is independent of the dynamic pressure, referred to as von Mises yield criterion. Two commonly used variants, perfect/ideal and composite viscoplasticity, are compared. We derive both variants from energy minimization principles, and we use this perspective to argue when solutions are unique. We propose a new stress-velocity Newton solution algorithm that treats the stress as an independent variable during the Newton linearization but requires solution only of Stokes systems that are of the usual velocity-pressure form. To study different solution algorithms, we implement 2D and 3D finite element discretizations, and we generate Stokes problems with up to 7 orders of magnitude viscosity contrasts, in which compression or tension results in significant nonlinear localization effects. Comparing the performance of the proposed Newton method with the standard Newton method and the Picard fixed-point method, we observe a significant reduction in the number of iterations and improved stability with respect to problem nonlinearity, mesh refinement, and the polynomial order of the discretization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源