论文标题

变化的牛顿常数和黑洞到白洞量子隧道

Varying Newton constant and black hole to white hole quantum tunneling

论文作者

Volovik, G. E.

论文摘要

当牛顿常数$ g $不是常数而是热力学变量时,讨论了黑洞的热力学。这给出了Schwarzschild黑洞热力学的第一定律:$ ds_ \ text {bh} = -adk + \ frac {dm} {dm} {t _ \ text {bh}} $,重力耦合$ k = 1/4g $ k = 1/4g $,$ m $是$ $ $ $ $ $ $ $ $ $是鹰温度。从这一第一法律来看,无量纲的数量$ m^2/k $是绝热不变的,如果要遵循Bekenstein猜想,则可以对此进行量化。从欧几里得动作的黑洞动作中,$ k $和$ a $用作动态共轭变量。这使我们能够计算从黑洞到白洞的量子隧穿,并确定白洞的温度和熵。

The thermodynamics of black holes is discussed for the case, when the Newton constant $G$ is not a constant, but is the thermodynamic variable. This gives for the first law of the Schwarzschild black hole thermodynamics: $dS_\text{BH}= -AdK + \frac{dM}{T_\text{BH}}$, where the gravitational coupling $K=1/4G$, $M$ is the black hole mass, $A$ is the area of horizon, and $T_\text{BH}$ is Hawking temperature. From this first law it follows that the dimensionless quantity $M^2/K$ is the adiabatic invariant, which in principle can be quantized if to follow the Bekenstein conjecture. From the Euclidean action for the black hole it follows that $K$ and $A$ serve as dynamically conjugate variables. This allows us to calculate the quantum tunneling from the black hole to the white hole, and determine the temperature and entropy of the white hole.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源