论文标题

翻译组的内态代数和仿生平面中痕量保存内态的联想统一环

The Endomorphisms Algebra of Translations Group and Associative Unitary Ring of Trace-Preserving Endomorphisms in Affine Plane

论文作者

Zaka, Orgest

论文摘要

本文介绍了对仿生平面中翻译组的内态性的描述,将定义一组内态性的添加和组成,并指定与这两个动作相关的中性元素,并呈现其内态代数,以区分痕迹性的内态词架,并将其相关的序言相关联,并将其相关的行动与'和Proers'相关联,并列入了'和'一个交换群体。我们还试图证明一组痕量保护的内态性以及这两个动作在其中“加法”和“组成”形成了一个关联和统一的环。

This paper introduces a description of Endomorphisms of the translation group in an affine plane, will define the addition and composition of the set of endomorphisms and specify the neutral elements associated with these two actions and present the Endomorphism algebra thereof will distinguish the Trace-preserving endomorphism algebra in affine plane, and prove that the set of Trace-preserving endomorphism associated with the 'addition' action forms a commutative group. We also try to prove that the set of trace-preserving endomorphism, together with the two actions, in it, 'addition' and 'composition' forms an associative and unitary ring.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源