论文标题
BiharmonicSchrödinger方程的非均匀初始边界价值问题间隔
Non-homogeneous initial boundary value problems for the biharmonic Schrödinger equation on an interval
论文作者
论文摘要
在本文中,我们考虑了分别具有非均匀的navier或dirichlet边界条件的有界间隔$(0,l)$的非线性biharmonicschrödinger方程的初始边界值问题(IBVP)。对于Navier Boundare IBVP,如果初始数据位于$ h^s(0,l)$中,则我们设置了其本地适用性,$ s \ geq 0 $和$ s \ s \ neq n+1/2,n \ in \ mathbb {n} $,并且从适当的空间中选择了与最佳规律的适当空间,$ j $。 $ h_ {loc}^{(s+3-j)/4}(\ mathbb {r}^+)$,对于$ j = 0,2 $。对于Dirichlet边界IBVP,当$ s> 10/7 $和$ s \ s \ neq n+1/2,n \ in \ mathbb {n} $中时,获得相应的本地适合性,并且从适当的空间中选择了带有最佳规律性的适当空间,即$ j $ -j $ - the $ j $ - n $ h _}/s loc h _} {s s+h_} {s+h _} { {r}^+)$,对于$ j = 0,1 $。
In this paper we consider the initial boundary value problem (IBVP) for the nonlinear biharmonic Schrödinger equation posed on a bounded interval $(0,L)$ with non-homogeneous Navier or Dirichlet boundary conditions, respectively. For Navier boundary IBVP, we set up its local well-posedness if the initial data lies in $H^s(0, L)$ with $s\geq 0$ and $s\neq n+1/2, n\in \mathbb{N}$, and the boundary data are selected from the appropriate spaces with optimal regularities, i.e., the $j$-th order data are chosen in $H_{loc}^{(s+3-j)/4}(\mathbb {R}^+)$, for $j=0,2$. For Dirichlet boundary IBVP the corresponding local well-posedness is obtained when $s>10/7$ and $s\neq n+1/2, n\in \mathbb{N}$, and the boundary data are selected from the appropriate spaces with optimal regularities, i.e., the $j$-th order data are chosen in $H_{loc}^{(s+3-j)/4}(\mathbb {R}^+)$, for $j=0,1$.