论文标题
莫尔斯准鲜乳II
Morse Quasiflats II
论文作者
论文摘要
这是有关Morse准列术的两部分论文中的第二份 - 莫尔斯准杂志学的较高维度类似物。我们这里的重点是它们的渐近结构。在具有凸的大地混合物的度量空间中,我们证明了渐近锥状性,无穷大的切线锥的独特性以及莫尔斯准卵质体的欧几里得体积生长刚度。此外,我们提供了一些直接的后果。
This is the second in a two part series of papers concerning Morse quasiflats - higher dimensional analogs of Morse quasigeodesics. Our focus here is on their asymptotic structure. In metric spaces with convex geodesic bicombings, we prove asymptotic conicality, uniqueness of tangent cones at infinity and Euclidean volume growth rigidity for Morse quasiflats. Moreover, we provide some immediate consequences.