论文标题

NECPD:具有最佳随机梯度下降的在线张量分解

NeCPD: An Online Tensor Decomposition with Optimal Stochastic Gradient Descent

论文作者

Anaissi, Ali, Suleiman, Basem, Zandavi, Seid Miad

论文摘要

多通道数据分析已成为捕获存储在张量$ \ MATHCAL中的高阶数据集中的基础结构的重要工具,in \ Mathbb {r} ^{r} ^{i_1 \ times \ dips \ dots \ times \ times \ times i_n} $。 $ candecomp/parafac $(cp)分解已被广泛研究并应用于$ \ nathcal {x} $ by $ n $ loading矩阵$ a^{(1)},\ dots,a^{(n)} $ n $ n $代表tensor的订单。我们根据随机梯度下降(SGD)算法提出了一个新的高效CP分解求解器,用于多路在线数据中的NECPD。 SGD在在线设置中非常有用,因为它允许我们在一个步骤中更新$ \ Mathcal {x}^{(t+1)} $。就全球融合而言,众所周知,当SGD处理非凸问题时,SGD卡在许多马鞍点上。我们研究Hessian矩阵以识别这些鞍点,然后尝试使用扰动方法来逃避它们,从而为梯度更新步骤增加噪音。我们在SGD算法中进一步应用Nesterov的加速梯度(NAG)方法,以最佳加速收敛速率并补偿每个时期的Hessian计算延迟时间。使用基于实验室和现实生活的结构数据集进行结构健康监测领域的实验评估表明,与现有的在线张量分析方法相比,我们的方法提供了更准确的结果。

Multi-way data analysis has become an essential tool for capturing underlying structures in higher-order datasets stored in tensor $\mathcal{X} \in \mathbb{R} ^{I_1 \times \dots \times I_N} $. $CANDECOMP/PARAFAC$ (CP) decomposition has been extensively studied and applied to approximate $\mathcal{X}$ by $N$ loading matrices $A^{(1)}, \dots, A^{(N)}$ where $N$ represents the order of the tensor. We propose a new efficient CP decomposition solver named NeCPD for non-convex problem in multi-way online data based on stochastic gradient descent (SGD) algorithm. SGD is very useful in online setting since it allows us to update $\mathcal{X}^{(t+1)}$ in one single step. In terms of global convergence, it is well known that SGD stuck in many saddle points when it deals with non-convex problems. We study the Hessian matrix to identify theses saddle points, and then try to escape them using the perturbation approach which adds little noise to the gradient update step. We further apply Nesterov's Accelerated Gradient (NAG) method in SGD algorithm to optimally accelerate the convergence rate and compensate Hessian computational delay time per epoch. Experimental evaluation in the field of structural health monitoring using laboratory-based and real-life structural datasets show that our method provides more accurate results compared with existing online tensor analysis methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源