论文标题
隐藏的对称性,用于透明的保姆空间
Hidden symmetries for transparent de Sitter space
论文作者
论文摘要
众所周知,奇异的de de de de teper空间是自由场的透明潜力。先前的研究通过将DE Sitter自由磁场方程与时间独立的Schrodinger方程与已知透明电位的时间无关的Schrodinger方程相关联,从而解释了这一现象。在这项工作中,我们表明,De Sitter的透明度是一组无限的“隐藏”对称性的结果。这些对称性来自物质场的零模式的意外对称性,以及de Sitter空间的增强等轴测图。为简单起见,我们考虑了庞大的克莱因·戈登理论的案例。我们表明,与这些隐藏对称性相关的NUETHE电荷区分了DE Sitter的渐近过去和未来,自由场波方程的两个线性独立的解。这些电荷的保护要求任何解决方案的渐近行为在将来和过去,直至恒定阶段相同,这是透明度的特性。在量化的理论中,这些电荷在属于In/Out真空群空间的粒子状态上起作用。对于由其他真空构成的粒子状态,电荷的作用会产生颗粒。我们评论这些隐藏的对称性如何在互动理论中存在。
It is known that odd-dimensional de Sitter space acts as a transparent potential for free fields. Previous studies have explained this phenomena by relating de Sitter free field equations of motion to the time-independent Schrodinger equation with known transparent potentials. In this work we show that de Sitter's transparency is a consequence of an infinite set of "hidden" symmetries. These symmetries arise from an accidental symmetry for the zero-mode of matter fields, as well as the boost isometry of de Sitter space. For simplicity, we consider the case of massive Klein-Gordon theory. We show that the Noether charges associated with these hidden symmetries distinguish the two linearly-independent solutions of the free field wave equation in the asymptotic past and future of de Sitter. Conservation of these charges requires that the asymptotic behavior of any solution be identical, up to a constant phase, in the future and the past, which is the property of transparency. In the quantized theory, these charges act trivially on particle states belonging to the in/out vacuum Fock space. For particle states constructed from other vacua, the action of the charges generates particles. We comment on how these hidden symmetries may be present in interacting theories.