论文标题

降低浮子理论的定量性质

The quantitative nature of reduced Floer theory

论文作者

Venkatesh, Sara

论文摘要

我们研究了负符号线束中磁盘子捆绑包的符合性共同体学。我们表明,这种同种学理论“看到”了量子量子共同学的量子谱。确切地说,量子同胞分解为量子杯产物的第一阶级类作用的广义特征空间。半径$ r $的磁盘捆绑包的符号共同体减少了,其特征值的大小小于$ r $,可以通过固定常数进行重新缩放。同样,我们表明Radii $ r_1 $和$ r_2 $之间的环形分支的符合性共同体减少了,其特征值的大小在$ r_1 $和$ r_2 $之间,可捕获所有特征。我们展示了这些计算如何遵循局部封闭式镜像对称性语句。

We study the reduced symplectic cohomology of disk subbundles in negative symplectic line bundles. We show that this cohomology theory "sees" the spectrum of a quantum action on quantum cohomology. Precisely, quantum cohomology decomposes into generalized eigenspaces of the action of the first Chern class by quantum cup product. The reduced symplectic cohomology of a disk bundle of radius $R$ sees all eigenspaces whose eigenvalues have size less than $R$, up to rescaling by a fixed constant. Similarly, we show that the reduced symplectic cohomology of an annulus subbundle between radii $R_1$ and $R_2$ captures all eigenspaces whose eigenvalues have size between $R_1$ and $R_2$, up to a rescaling. We show how local closed-string mirror symmetry statements follow from these computations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源