论文标题

Čech(共同)复合物作为Koszul复合物和应用

Čech (co-) complexes as Koszul complexes and applications

论文作者

Schenzel, Peter

论文摘要

令$ \ check {c} _ {\ loessline {x}} $表示čech复合体相对于元素系统$ \ usevenline {x} = x_1,\ ldots,x_r $ r $ r $。我们构建了一个有限的复杂$ \ Mathcal {l} _ {\下划线{x}} $的免费$ r $ -modules和Quasi-Isomorphism $ \ Mathcal {l} _ {\ supperline {x}}} \ check {c} _ {\ usewissline {x}} $ and isomorphisms $ \ mathcal {l} _ {\ usewiseline {x}} \ otimes_r x \ cong k^\ cong k^{\ bulter}(\ buleast}( x [\下划线{ $ r $ - complex $ x $。这里$ \下划线{x} - \下划线{u} $表示元素的顺序$ x_1-u_1,\ ldots,x_r-u_r $ in polyenmial Ring $ r [\ useverline {u} u_1,\ ldots,u_r $ of $ r $。此外,$ x [[\ usewissline {u}] $表示$ \ usepline {u} $和$ x [\ usepline {u}^{ - 1}] $ in $ x $的正式功率系列复合体表示$ \ \ upessline {u} $的$ x $ $ x $的相反多项式的复杂。此外,$ k _ {\ bullet}(\下划线{x} - \ usepline {u}; x [[\ upsine {u}]])$ resp。 $ k^{\ bullet}(\下划线{x} - \ usewissline {u}; x [\ usepline {u}^{ - 1}])$表示相应的koszul复合物。相应的Koszul共络合物。特别是,由某个Koszul Complects有一个有限的$ r $ - free分辨率的$ \ check {c} _ {\ usewissline {x}} $。这有各种后果,例如在$ \ underline {x} $的情况下,是一个弱的pro-try-temular序列。在这一其他假设下,请参见本地的同胞$ h^i _ {\下划线{x} r}(x)$以及完成$λ_i^{\ unesevenlline {x} r}(x} r}(x)(x),i \ in \ mathbbb {z},$ koszul cos的左派生函数。这为扭转的右衍生函数提供了新的方法,并提供了各种应用程序的左派生函数。

Let $\check{C}_{\underline{x}}$ denote the Čech complex with respect to a system of elements $\underline{x} = x_1,\ldots,x_r$ of a commutative ring $R$. We construct a bounded complex $\mathcal{L}_{\underline{x}}$ of free $R$-modules and a quasi-isomorphism $\mathcal{L}_{\underline{x}} \stackrel{\sim}{\longrightarrow} \check{C}_{\underline{x}}$ and isomorphisms $\mathcal{L}_{\underline{x}} \otimes_R X \cong K^{\bullet}(\underline{x}-\underline{U}; X[\underline{U}^{-1}])$ and $\operatorname{Hom}_R(\mathcal{L}_{\underline{x}},X) \cong K_{\bullet}(\underline{x}-\underline{U};X[[\underline{U}]])$ for an $R$-complex $X$. Here $\underline{x} - \underline{U}$ denotes the sequence of elements $x_1-U_1,\ldots,x_r-U_r$ in the polynomial ring $R[\underline{U}] = R[U_1,\ldots,U_r]$ in the variables $\underline{U}= U_1,\ldots,U_r$ over $R$. Moreover $X[[\underline{U}]]$ denotes the formal power series complex of $X$ in $\underline{U}$ and $X[\underline{U}^{-1}]$ denotes the complex of inverse polynomials of $X$ in $\underline{U}$. Furthermore $K_{\bullet}(\underline{x}-\underline{U};X[[\underline{U}]])$ resp. $K^{\bullet}(\underline{x}-\underline{U}; X[\underline{U}^{-1}])$ denotes the corresponding Koszul complex resp. the corresponding Koszul co-complex. In particular, there is a bounded $R$-free resolution of $\check{C}_{\underline{x}}$ by a certain Koszul complex. This has various consequences e.g. in the case when $\underline{x}$ is a weakly pro-regular sequence. Under this additional assumption it follows that the local cohomology $H^i_{\underline{x} R}(X)$ and the left derived functors of the completion $Λ_i^{\underline{x} R}(X), i \in \mathbb{Z},$ is a certain Koszul cohomology and Koszul homology resp. This provides new approaches to the right derived functor of torsion and the left derived functor of completion with various applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源