论文标题

在$ T_0 $空间的H-索伯空间和H-S-obrification

On H-sober spaces and H-sobrifications of $T_0$ spaces

论文作者

Xu, Xiaoquan

论文摘要

在本文中,我们为$ d $空间,清醒的空间和过滤良好的空间提供了统一的方法,并开发了处理所有这些空间的一般框架。对于子集系统h,建立了H-索伯空间和超级H-索空间的理论,并给出了$ T_0 $空间的H-近距离和超级H-验证的直接构造。因此,所有H-索伯空间的类别都在$ \ mathbf {top} _0 $中反射,并且所有超级h-seber空间的类别在$ \ mathbf {top} _0 $(如果H具有天然属性(称为属性M)(称为属性M)(称为属性M)(称为property M)(称为property M)(称为top} _0)中。结果表明,H-S-obrification保留了$ T_0 $空间的有限产品,而超级H-S-S-S-S-S-S-S-S-S-S-S-S-S-S-0 $ T_0 $空间则保留了$ T_0 $的空间。

In this paper, we provide a uniform approach to $d$-spaces, sober spaces and well-filtered spaces, and develop a general framework for dealing with all these spaces. For a subset system H, the theory of H-sober spaces and super H-sober spaces is established, and a direct construction of the H-sobrifcations and super H-sobrifications of $T_0$ spaces is given. Therefore, the category of all H-sober spaces is reflective in $\mathbf{Top}_0$, and the category of all super H-sober spaces is also reflective in $\mathbf{Top}_0$ if H has a natural property (called property M). It is shown that the H-sobrification preserves finite products of $T_0$ spaces, and the super H-sobrification preserves finite products of $T_0$ spaces if H has property M.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源