论文标题

$ l^1 [0; 1] $附近的功能空间中的傅立叶系列序列发散系列

divergent Fourier series in function spaces near $L^1[0;1]$

论文作者

Kopaliani, Tengiz, Samashvili, Nino, Zviadadze, Shalva

论文摘要

在本文中,我们概括了Bochkariev的定理,该定理指出,对于任何均匀界限的正常系统$φ$,存在Lebesgue Entighable ablectable函数,以使其相对于系统$φ$差异的傅立叶序列在一组积极度量上差异。我们表征了变量指数lebesgue spaces的类别$ l^{p(\ cdot)} [0; 1] $,$ 1 <p(x)<\ infty $ a.e.在[0; 1]上,因此上述Bochkarev的定理是有效的。

In this paper we generalize Bochkariev's theorem, which states that for any uniformly bounded orthonormal system $Φ$, there exists a Lebesgue integrable function such that the Fourier series of it with respect to system $Φ$ diverge on the set of positive measure. We characterize the class of variable exponent Lebesgue spaces $L^{p(\cdot)}[0;1]$, $1<p(x)<\infty$ a.e. on [0;1], such that above mentioned Bochkarev's theorem is valid.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源