论文标题

不可压缩的Navier-Stokes方程

High-order arbitrary Lagrangian-Eulerian discontinuous Galerkin methods for the incompressible Navier-Stokes equations

论文作者

Fehn, Niklas, Heinz, Johannes, Wall, Wolfgang A., Kronbichler, Martin

论文摘要

本文介绍了不可压缩的Navier-Stokes方程在移动网格中的强大不连续的galerkin方法。高阶准确的任意拉格朗日 - 欧拉群岛制剂在统一的框架中针对单片以及投影或拆分型Navier-Stokes solvers提出。该框架是灵活的,允许对流术语的隐式和明确的公式以及自适应时间步变。带有ALE传输项的Navier-Stokes方程在存储网格的一个实例上求解了一个从一个时间步骤更新到下一个。空间中的离散化应用于时间离散方程,以便在当前时间步骤结束时评估所有弱形式和质量矩阵。该设计可确保所提出的配方自动符合几何保护法,如理论上所示,并通过自由流保护测试的示例在数字上显示。我们讨论了与投影类型方法的中间步骤中的边界条件相关的特殊性以及保持高阶精度所需的成分。我们从数值上表明,这项工作中提出的配方保持了Navier-Stokes求解器的正式准确性顺序。此外,我们证明了解决不足的湍流的鲁棒性和准确性。

This paper presents robust discontinuous Galerkin methods for the incompressible Navier-Stokes equations on moving meshes. High-order accurate arbitrary Lagrangian-Eulerian formulations are proposed in a unified framework for both monolithic as well as projection or splitting-type Navier-Stokes solvers. The framework is flexible, allows implicit and explicit formulations of the convective term, and adaptive time-stepping. The Navier-Stokes equations with ALE transport term are solved on the deformed geometry storing one instance of the mesh that is updated from one time step to the next. Discretization in space is applied to the time discrete equations so that all weak forms and mass matrices are evaluated at the end of the current time step. This design ensures that the proposed formulations fulfill the geometric conservation law automatically, as is shown theoretically and demonstrated numerically by the example of the free-stream preservation test. We discuss the peculiarities related to the imposition of boundary conditions in intermediate steps of projection-type methods and the ingredients needed to preserve high-order accuracy. We show numerically that the formulations proposed in this work maintain the formal order of accuracy of the Navier-Stokes solvers. Moreover, we demonstrate robustness and accuracy for under-resolved turbulent flows.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源