论文标题
由时间周期域驱动的非对抗障碍系统中异常和安德森本地化之间的过渡
Transition between anomalous and Anderson localization in systems with non-diagonal disorder driven by time-periodic fields
论文作者
论文摘要
在没有外部田地和带中心的跳跃障碍模型中,电子在空间中的位置较小,而不是标准的指数安德森本地化。这种异常定位的签名是电导率对对数平均值对系统长度的平均值的平方根依赖性,与安德森局部化系统的线性长度依赖性相反。我们研究了时间周期性外场在与跳跃障碍的量子线的缩放和分布中的效果。在低频制度中,我们显示了异常定位与安德森本地化之间的过渡,这是外部磁场参数的函数。 Floquet模式将不同的能量贡献和对数平均值的标准长度依赖性混合在一起,因为我们降低了频率或增加外部场的幅度。在高频制度中,该系统呈现出异常的定位,但由于外部场的参数,通过耦合到导线的干扰效应,电导率也被重新归一致。这允许高度控制电导的平均值。
In models of hopping disorder in the absence of external fields and at the band center, the electrons are less localized in space than the standard exponential Anderson localization. A signature of this anomalous localization is the square root dependence of the logarithmic average of the conductance on the system length, in contrast to the linear length dependence for Anderson localized systems. We study the effect of a time-periodic external field in the scaling and distribution of the conductance of a quantum wire with hopping disorder. In the low-frequency regime, we show a transition between anomalous localization and Anderson localization as a function of the parameters of the external field. The Floquet modes mix different energy contributions and standard length dependence of the logarithmic average of the conductance is gradually recovered as we lower the frequency or increase the amplitude of the external field. In the high-frequency regime, the system presents still anomalous localization but the conductance is also renormalized, depending on the parameters of the external field, by interference effects at the coupling to the leads. This allows for a high degree of control of the average of the conductance.