论文标题

在多层网络上移动下的SIS流行模型

SIS Epidemic Model under Mobility on Multi-layer Networks

论文作者

Abhishek, Vishal, Srivastava, Vaibhav

论文摘要

我们研究了异质迁移率模式对人群对SIS流行模型的影响。特别是,我们考虑了一个宽松的环境,其中每个贴片包括属于不同阶级的个人,例如不同社会经济阶层的个体。我们通过相关的连续时间马尔可夫链(CTMC)对每个班级的个体的移动性建模。这些多个CTMC的拓扑构成了多层移动网络。每个时候,个体根据其CTMC的空间分布贴片的多层网络移动,然后根据SIS流行模型与斑块中的本地个体相互作用。我们得出了描述这些迁移率 - 流动相互作用的确定性连续性极限模型。我们在不同的参数方面建立了无病平衡(DFE)和地方性平衡(EE)的存在,并使用Lyapunov技术建立了其(几乎)全球渐近稳定性。我们得出了简单的足够条件,突出了多层网络对DFE稳定性的影响。最后,我们从数值上说明衍生模型提供了有限种群的随机模型的良好近似值,并且还证明了多层网络结构对瞬态性能的影响。

We study the influence of heterogeneous mobility patterns in a population on the SIS epidemic model. In particular, we consider a patchy environment in which each patch comprises individuals belonging the different classes, e.g., individuals in different socio-economic strata. We model the mobility of individuals of each class across different patches through an associated Continuous Time Markov Chain (CTMC). The topology of these multiple CTMCs constitute the multi-layer network of mobility. At each time, individuals move in the multi-layer network of spatially-distributed patches according to their CTMC and subsequently interact with the local individuals in the patch according to an SIS epidemic model. We derive a deterministic continuum limit model describing these mobility-epidemic interactions. We establish the existence of a Disease-Free Equilibrium (DFE) and an Endemic Equilibrium (EE) under different parameter regimes and establish their (almost) global asymptotic stability using Lyapunov techniques. We derive simple sufficient conditions that highlight the influence of the multi-layer network on the stability of DFE. Finally, we numerically illustrate that the derived model provides a good approximation to the stochastic model with a finite population and also demonstrate the influence of the multi-layer network structure on the transient performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源