论文标题

限制IA SN 2019Ein型高速喷射的来源

Constraining the Source of the High-velocity Ejecta in Type Ia SN 2019ein

论文作者

Pellegrino, C., Howell, D. A., Sarbadhicary, S. K., Burke, J., Hiramatsu, D., McCully, C., Milne, P. A., Andrews, J. E., Brown, P., Chomiuk, L., Hsiao, E. Y., Sand, D. J., Shahbandeh, M., Smith, N., Valenti, S., Vinkó, J., Wheeler, J. C., Wyatt, S., Yang, Y.

论文摘要

我们提出了SN 2019Ein的多波长度测定和光谱观测,这是一种在附近的Galaxy NGC 5353中发现的高速IA型超新星(SN IA),并具有为期两天的非探测极限。 SN 2019Ein在任何SN IA的膨胀速度中表现出一些最高的膨胀速度,在峰值亮度前14天后,SI II吸收最小的蓝光速度为24,000 km s $^{ - 1} $。更奇怪的是,我们观察到p Cygni配置文件的发射组件在B波段最大光线之前的蓝光升级为10,000 km s $^{ - 1} $。这种蓝光是在其他28种IA型超新星样本中最高的,在我们最早的光谱时期最大,随后降低了最大光。我们讨论可能解释这些极端吸收和排放速度的祖细胞系统和爆炸机制。无线电观察开始在B波段最大的光线在SN 2019Ein位置的最大光线无效,该位置排除了共生祖细胞系统,大多数快速光学厚的吸积风和质量$ \ lyssim 10^{ - 6} $ M $ _ \ odot $ y ladii $ $ <100 $ <100 $ <100 $ au au au $ <100^$ y odot $ \ ysim $ \ sime $ \ sime $ \ sim $ \ lysesim的贝壳。将我们的光谱与其他高速SNE IA的模型和观察结果进行了比较,我们发现SN 2019Ein非常适合延迟的爆炸。我们建议,高排放速度可能是由于不对称爆炸中的射流混合而引起的丰度增强的结果,或者在早期弹射器的光球中的光学深度效应。这些发现可能提供了高速sne ia中常见爆炸机制和射流几何形状的证据。

We present multiwavelength photometric and spectroscopic observations of SN 2019ein, a high-velocity Type Ia supernova (SN Ia) discovered in the nearby galaxy NGC 5353 with a two-day nondetection limit. SN 2019ein exhibited some of the highest measured expansion velocities of any SN Ia, with a Si II absorption minimum blueshifted by 24,000 km s$^{-1}$ at 14 days before peak brightness. More unusually, we observed the emission components of the P Cygni profiles to be blueshifted upward of 10,000 km s$^{-1}$ before B-band maximum light. This blueshift, among the highest in a sample of 28 other Type Ia supernovae, is greatest at our earliest spectroscopic epoch and subsequently decreases toward maximum light. We discuss possible progenitor systems and explosion mechanisms that could explain these extreme absorption and emission velocities. Radio observations beginning 14 days before B-band maximum light yield nondetections at the position of SN 2019ein, which rules out symbiotic progenitor systems, most models of fast optically thick accretion winds, and optically thin shells of mass $\lesssim 10^{-6}$ M$_\odot$ at radii $< 100$ AU. Comparing our spectra to models and observations of other high-velocity SNe Ia, we find that SN 2019ein is well fit by a delayed-detonation explosion. We propose that the high emission velocities may be the result of abundance enhancements due to ejecta mixing in an asymmetric explosion, or optical depth effects in the photosphere of the ejecta at early times. These findings may provide evidence for common explosion mechanisms and ejecta geometries among high-velocity SNe Ia.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源