论文标题
边缘理想权力的规律性与(IM,reg) - 激进扩展之间的关系
Relation between regularity of powers of edge ideals and (im, reg)-invariant extension
论文作者
论文摘要
在本文中,我们定义了图形的(IM,REG) - invariant扩展,并为Nevo和Peeva的猜想提出了一种新方法,该方法说,对于任何带有$ reg(i(g))的任何无差距$ g $(i(g))= 3 $,对于任何$ k \ geq 2 $,$ i(g),$ i(g)^k $均具有线性性分辨率。 此外,我们考虑了与无间隙图的边缘理想的规律性有关的新猜想。
In this paper, we define (im, reg)-invariant extension of graphs and propose a new approach for Nevo and Peeva's conjecture which said that for any gap-free graph $G$ with $reg(I(G)) = 3$ and for any $k \geq 2$, $I(G)^k$ has a linear resolution. Moreover, we consider new conjectures related to the regularity of powers of edge ideals of gap-free graphs.