论文标题

$^\ textbf {48} $ ca的核基质元素中的两个核基质元素中的单个组件在核基质元素中的作用

Role of individual components of two-nucleon interaction in nuclear matrix elements of $2νββ$ and $0νββ$ of $^\textbf{48}$Ca: Beyond the closure approximation

论文作者

Sarkar, Shahariar, Kumar, Pawan, Jha, Kanhaiya, Raina, P. K.

论文摘要

在目前的工作中,我们研究了两核矩阵元素(NME)中心(c),自旋轨道(SO)和张量(t)组件的作用(nmes),双β型($2νββ$)以及nepretrino-exchange double beta beta depa $ capa $ capa $0νβ$ a $ capa $ capa $ capa $ nc $0νβ$ a $ nz $0ν$ a闭合近似和违禁方法。 NME使用用于$ pf $ shell的两个核壳框架在核壳模型框架中计算。壳模型的两种核子相互作用的分解是使用自旋调整分解(STD)进行的。 $2νβ$的NME是通过运行违禁方法计算的。 $0νβ$的NME使用四种不同的方法计算,即闭合,闭合,违反限制和混合方法。结果表明,与C分量相比,相互作用的C+分量的NME的大小与C+的分量相比,NME的大小降低了约7%。通过将T分量添加到C+SO分量中,NME的大小将进一步降低9 \%。与在运行闭合方法中使用C,C+SO组件和总(C+SO+T)GXPF1A相互作用相比,分别计算出的NME相比,在运行违禁方法中计算的$0νβ$的NME分别增强了约8-10 \%,8-10 \%和9-12 \%。对于$2νβ$和$0νβ$,使用C+计算的NME与使用C分量计算的NME和总GXPF1A相互作用相反。

In the present work, we examine the role of central (C), spin-orbit (SO) and tensor (T) components of two-nucleon interaction in the nuclear matrix elements (NMEs) of the two-neutrino double beta decay ($2νββ$) and the light neutrino-exchange mechanism of neutrinoless double beta decay ($0νββ$) of $^{48}$Ca in closure approximation and nonclosure approach. The NMEs are calculated in the nuclear shell-model framework using two-nucleon effective interaction GXPF1A used for $pf$ shell. The decomposition of the shell model two-nucleon interaction into its individual components is performed using the spin-tensor decomposition (STD). The NMEs for $2νββ$ are calculated in running nonclosure method. The NMEs for $0νββ$ are calculated with four different methods, namely, closure, running closure, running nonclosure, and mixed method. Results show that the magnitude of NMEs for $2νββ$ decreases about 7\% with the C+SO component of the interaction as compared to the C component. The magnitude of NMEs is further decreased about 9\% by adding T component to the C+SO component. The NMEs of $0νββ$ calculated in running nonclosure method are enhanced by about 8-10\%, 8-10\%, and 9-12\%, respectively, as compared to corresponding NMEs calculated in running closure method with C, C+SO components and total (C+SO+T) GXPF1A interaction for different SRC parametrization. For both $2νββ$ and $0νββ$, the NMEs calculated with C+SO component is in opposite phase with the NMEs calculated with C component and the total GXPF1A interaction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源