论文标题

客户服务器人口流量繁忙

Customer-server population dynamics in heavy traffic

论文作者

Atar, Rami, Karmakar, Prasenjit, Lipshutz, David

论文摘要

我们研究了带有服务器假期的多个服务器排队模型,在该模型中,服务器和客户的人口大小动态耦合:只有在没有客户等待的情况下,服务器才能离开度假,并且客户可用的容量会直接受到度假时的服务器数量的影响。我们专注于缩放制度,在匹配的时间尺度上,服务器动力学和队列动力学会波动,以使其限制动力学结合。具体而言,我们认为有趣的耦合动力学发生在(a)半惠特政权,(b)非排定放缓制度,以及(c)中级,接近Halfin-Whitt政权;而动态在其他繁重的交通状态下渐近地脱成了。我们表征了限制动力学,这些动力学对于每个缩放制度都不同。我们考虑对政权(a)和(b)的相关绩效指标,即等待和放缓的可能性。尽管已为不适合服务器假期的模型得出了这些性能指标的封闭式公式,但在使用服务器度假的情况下,很难为这些性能指标获得封闭的表单公式。取而代之的是,我们提出了近似这些性能度量的公式,并取决于稳态的无用服务器的平均数量和未经服务器假期模型的先前派生公式。我们通过数值测试这些公式的准确性。

We study a many-server queueing model with server vacations, where the population size dynamics of servers and customers are coupled: a server may leave for vacation only when no customers await, and the capacity available to customers is directly affected by the number of servers on vacation. We focus on scaling regimes in which server dynamics and queue dynamics fluctuate at matching time scales, so that their limiting dynamics are coupled. Specifically, we argue that interesting coupled dynamics occur in (a) the Halfin-Whitt regime, (b) the nondegenerate slowdown regime, and (c) the intermediate, near Halfin-Whitt regime; whereas the dynamics asymptotically decouple in the other heavy traffic regimes. We characterize the limiting dynamics, which are different for each scaling regime. We consider relevant respective performance measures for regimes (a) and (b) --- namely, the probability of wait and the slowdown. While closed form formulas for these performance measures have been derived for models that do not accommodate server vacations, it is difficult to obtain closed form formulas for these performance measures in the setting with server vacations. Instead, we propose formulas that approximate these performance measures, and depend on the steady-state mean number of available servers and previously derived formulas for models without server vacations. We test the accuracy of these formulas numerically.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源