论文标题
时刻de la farction delta de hooleyaSsociée - uncaractère
Moments de la fonction Delta de Hooley associée à un caractère
论文作者
论文摘要
令$ f $为算术函数,$ v \ geqslant 1 $ a实际数字和$$Δ_V(n,f):= \ sup \ limits _ {\ ordack {\ in \ in \ mathbb {r} \\ {\ rm e}^{主要的真实Dirichlet字符或Möbius函数。回答一个问题的问题,我们扩展了他们的结果,以$ v $研究依赖性,包括复杂字符的情况。
Let $f$ be an arithmetic function, $V\geqslant 1$ a real number and $$Δ_V(n,f) := \sup\limits_{\substack{u \in \mathbb{R}\\ v \in [0,V]}}{\Big|\sum\limits_{\substack{d\mid n \\ {\rm e}^{u}<d\leqslant {\rm e}^{u+v}}}{f(d)}\Big|}{\rm .}$$ In a paper published in 2012, La Bretèche and Tenenbaum investigated weighted moments of $Δ_1(n,f)$ where $f$ is a non principal real Dirichlet character, or the Möbius function. Answering a question of Hooley, we extend their results studying dependance in $V$ and including the case of complex characters.