论文标题
速度屏障对单层MOS $ _ {2} $量子结构的巨大狄拉克电子传输的影响
Influence of the velocity barrier on the massive Dirac electron transport in a monolayer MoS$_{2}$ quantum structure
论文作者
论文摘要
使用转移矩阵方法,在正常/铁磁/正常单层MOS $ _ {2} $量子结构中研究了由速度屏障调制的自旋和山谷依赖的电子传输性能。根据Snell的光学定律,我们将速度屏障定义为$ξ= v_ {2}/v_ {1} $,通过更改中级铁磁区域的费米速度,以在结构中电子传输过程中获得偏转条件。结果表明,自旋和谷依赖性电子极化的大小和方向都可以通过速度屏障调节。 $ -100 \%$以$ξ> 1 $来实现自旋和山谷依赖电子的两极分化,而$ 100 \%$ $偏振是可以以$ξ<1 $ $获得的。此外,确定完美的自旋和山谷运输总是以较大的入射角出现。此外,旋转依赖性电子传输很大程度上取决于中间铁磁区域的长度$ k_ {f} l $和栅极电压$ u(x)$。这些发现提供了设计新型自旋和山谷电子设备的有效方法。
Using the transfer matrix method, spin- and valley-dependent electron transport properties modulated by the velocity barrier were studied in the normal/ferromagnetic/normal monolayer MoS$_{2}$ quantum structure. Based on Snell's Law in optics, we define the velocity barrier as $ξ=v_{2}/v_{1}$ by changing the Fermi velocity of the intermediate ferromagnetic region to obtain a deflection condition during the electron transport process in the structure. The results show that both the magnitude and the direction of spin- and valley-dependent electron polarization can be regulated by the velocity barrier. $-100\%$ polarization of spin- and valley-dependent electron can be achieved for $ξ>1$, while $100\%$ polarization can be obtained for $ξ<1$. Furthermore, it is determined that perfect spin and valley transport always occur at a large incident angle. In addition, the spin- and valley-dependent electron transport considerably depends on the length $k_{F}L$ and the gate voltage $U(x)$ of the intermediate ferromagnetic region. These findings provide an effective method for designing novel spin and valley electronic devices.