论文标题
无序的波纹相位和独立石墨烯中的多政治性
Disorder-induced rippled phases and multicriticality in free-standing graphene
论文作者
论文摘要
在包括悬浮石墨烯在内的晶体无序膜中观察到的最令人兴奋的现象之一是波纹,即静态弯曲变形的形成。尽管进行了积极的研究,但仍然尚不清楚波纹相位是否存在于热力学极限中,还是被热波动破坏。我们证明,一种足够强的短距离疾病可以稳定涟漪,而在弱疾病的情况下,热弯曲波动在热力学极限中占主导地位。无序悬浮石墨烯的相图包含两个分离:折断的过渡线将平坦和皱巴巴的相位的折磨过渡线和荡漾的过渡线截断了波纹和干净的相。在分离的交集时,有不稳定的多个智力点,将所有四个阶段拆分。最值得注意的是,波纹和干净的平阶段由属于波纹过渡线的单个稳定固定点描述。由于相应的重新规范化组方程中的非分析性,因此可以在单点中进行两个扁平相的共存,并反映出消失的热和波动波动的限制的非交换性。
One of the most exciting phenomena observed in crystalline disordered membranes, including a suspended graphene, is rippling, i.e. a formation of static flexural deformations. Despite an active research, it still remains unclear whether the rippled phase exists in the thermodynamic limit, or it is destroyed by thermal fluctuations. We demonstrate that a sufficiently strong short-range disorder stabilizes ripples, whereas in the case of a weak disorder the thermal flexural fluctuations dominate in the thermodynamic limit. The phase diagram of the disordered suspended graphene contains two separatrices: the crumpling transition line dividing the flat and crumpled phases and the rippling transition line demarking the rippled and clean phases. At the intersection of the separatrices there is the unstable, multicritical point which splits up all four phases. Most remarkably, rippled and clean flat phases are described by a single stable fixed point which belongs to the rippling transition line. Coexistence of two flat phases in the single point is possible due to non-analiticity in corresponding renormalization group equations and reflects non-commutativity of limits of vanishing thermal and rippling fluctuations.